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Kinetic Monte-Carlo simulation of network formation
Ii. Effect of system size
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Summary

The simulation described in Part I was applied to random step polyaddition of a tri-
functional monomer and the results were compared with exact solution for an infinite
system. The gel point conversions, the weight-average degree of polymerization before
(Pw) and beyond (Pysa1) the gel point, the sol fraction and the cycle rank were used for
comparison. The best way for detection of the gel point conversion is the extrapolation
of the gel fraction, wg, to wg = 0. The largest fluctuations are exhibited by Py and Py .
To get results closer to the exact ones, one can repeat several experiments with smaller
number of units or increase the number of units, the former way being somewhat more
economical. Typical orders of magnitude used were 107 monomeric units.

Introduction

In Part II, the results of testing of the computer program described in Part I [1} are
described. To be able to compare the results with the exact solution, a simple system,
random polycondensation of a trifunctional monomer, has been chosen.

The main objectives of the study are as follows:

{a) simulation of the weight-average degree of polymerization, P, and its value, Py s,
for the sol, weight fraction of gel, wg, and cycle rank, ¢, as a function of the number
of units used in simulation, NV;

(b) investigation of fluctuation of results by repeating the experiment;

(c) finding the best criterion for determining the critical conversion at the gel point.

Random polycondensation of a trifunctional monomer

Ouly irreversible ideal step polyaddition (polycondensation) is considered. The kernel
(eq. (15) of Part I)

Kl %%,y = Eik(x, .. ) k(X .. ) 1 (1)
becomes for I; = I = [; kj = k; k(z,..)=k(z',..) = 1;ad’ =1
K1) = kI @)
1
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and the equation determining the changes in the concentrations of molecules A(x,1)

(cf. eq. (9) of Part I, f = 3) reads

z=1 o
fj‘_c.(gt’_l) = %k ST (I +L) e(l=E+1, z—a") o2’ U+ 1) —ke(z, 1) 3 1V e(2', 1) (3)

=1 z'=1

As was pointed out in Part 1, all finite molecules in an infinite system must have ouly a
iree-like structure. For trec-like molecules, a fixed rclation between ! and x holds

l=z(f—2)+2 (4)

because z — | bonds out of all possible fz/2 bonds are suflicient to connect z molecules.
The initial conditions for t = 0 are

¢g forz=1and!=3

e ) = { 0 otherwise (5)

where ¢ is the initial monomer concentration.

Calculated parameters

Typical parameters calculated to test the simulation procedure and the exact solutions
obtained by the theory of branching processes (cf. e.g. refs. 2 and 3) for an infinite system
are listed below:

Weight-average degree of polymerization including (P) end excluding (Py o) the largest
molecule

In a simulated (finite) system distinguishable molecules can be numbered and the corre-

sponding quantities denoted by subscripts 2 = 1, ..., nype. Formulas for Py and Py el
then read
Tuype Tuype
Pw = Z :1:]2 N,’ Z x; JV; (6)
i=1 i=1
Type Aype
Pw,snl = Z’ 1',2 Ni Z, B IVI' (7)
i=1 i=1

These formulas differ only in the range of summation: in P,, there are included all
molecules and in Py 5o, all but the largest molecule which is expressed by prime at the
summation sign. Before the gel point, the difference between Py and Pyt decreases to
zero with increasing system size. After the gel point, contribution te P, from the largest
molecule (gel) is prevailing and for infinite systems it diverges.

The exact solution for infinite system reads:

Py
P w,sol

I

1+ 3a/(1 = 2a) for a < oy (8)
143(1—)/(2a~1) fora>aoq )

where gel point conversion o, = 0.5. Up to the gel point P, o1 = Py
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Weight fraction of gel, w,
Titype
i N (10)

Ufg =

Litargess Nilugen
i=1

where tjargeq 18 an identification label of the largest molecule. The exact solution is

wg=]—(1—~a+av)3=1—(];0)3 (11)

. . e e 1—a\?
where v is the extinction probability; in this case v = ( )
[¢]

The cycle rank,

The cycle rank is an important quantity in rubber elasticity theories. By definition, the
cycle rank is equal to the number of bonds (edges) which must be split in a graph with
cycles to obtain a spanning tree {a connecied graph with tree-like structure). The number
of bonds In the molecule A(z, ) is {fz—{)/2 and the minimum number of bonds to connect
7 units into a tree-like molecule is z — 1 {cf. ¢q. (4)), hence

C=a(f-2)/2-1/2+1 (12)
(here f = 3).

For a perfect network, there exist one-to-one relalion between the cycle rank, number
of network chains (») and junctions (¢ = z) in the gel, because for an infinite system
r—l=xez

-2
C=v—u=f2 v (13)
For an imperfect network, the corresponding relation reads
fo—2
(e =Ve fle = 52 Ve (14)

where (¢, v, and p. mean the elastically cffcctive cycle rank, the number of elastically
active chains and elastically active junctions, respectively; f, is the average effective func-
tionalily which is equal to 3 if f = 3. The exact sclution for ¢ related to a monomeric
unit ({{ = (/=) read

3 . 1 1 f2a—1\3
c;=§a3(1_u)ta3(1—v)3:503(1-u)3=§(“a ) (15)
The cycle rank per monomeric unit in the gel
£t (2a - }')2
Ceg_(.e/ug—g(?a_l)gvi_g (16)

Simulation results

Two main tasks were pursued: the determination of the critical conversion and the changes
of various parameters listed above as a function of conversion of functional groups in
dependence on the number of monomeric units used in the sitmlation and on the number
of repetitions of the experiment.
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Figure 1: Examples of P, and P, . evolution for two experiments with & = 10° units.

Gel point conversion
Twao criteria for the gel point have been examined:

(1) maximum of the weight-average degree of polymerization of sol, fy g1, which, in an
infinite system, diverges at the gel point and falls again,

(2) the gel fraction, w,, which, in infinite system, is zero at the gel point and w, > 0

for a > a,.

(1) In the infinite system, all molecules contribute to Fy and beyond the gel point the
infinite structure is excluded from Iy o1 Before the gel point, Py . and Py are identical
because the contribution of the largest molecule (largest here means that its degree of
polvmerization is as large as any finite number) by its weight is negligible compared to
that of all other molecules.

In finite systems, P, defined by eq. (6) increases continuously through the “gel
point™ (in the infinite system il wonld diverge) and is thus of no use for detcction of
the gel point. On the other hand, the average Py s, from which the contribution by
the largest molecule is excluded, passes through a maximum value and decreases again.

As expected, the maximum P, 45 is found at conversions higher than the asymptotic oy
given by o = 1/{f —1). Figures la,b show the dependence of P, and P, . for two
experiments with 10% monomeric units. Figure 2 illustrates similar dependences for the
indicated number of monomeric nnits used in simelation. Thesc dependences are averaged
over several experiments as described in the legend. One can see that with increasing NV
the maximum value of P, . is shifted towards the expected gel point conversion, 1/2, valid
for an infinite system. In Figure 3, the values of « corresponding to the highest values of
Py coly Gmax, are plotled against Lhe system size. The fluctuations of experimental values
and the error bars corresponding to the root-mean-square deviation are alse shown. The
least-square plot of qugay V6. N™1/2 for N — oo gives a value very close to 1/2.

1t can be concluded that o, can be found with reasonable approximation (with
deviation of the order of 0.003) for a relatively large system (e.g. 107 units) or if the mean

value over several experiments (e.g. with N' = 10°) is taken.
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Figure 2: P, and Py, 4, for different sizes
N (each averaged over several experi-

ments) .

Figure 3: Values of @ corresponding to
the highest values of Py ly Quax plotted

against N~V/2,

Arnocther observation is still to be mentioned. The fluctuation pattern of several
experiments for the same systern size (10} shown in Fig. 4 does not lock fully random as
one might expect. In all individual experiments, one can see a series of steep and deep
falls preceded by gradual but irregular climbs. The cxplanation of this “regularity” is
that the deep fall corresponds to the reaction of the second largest molecules or one of the
next largest molecules with the largest one. The status of this molecule is then changed
from a couniable molecule to the uncountable largest one, and the average Py falls.
When the largest molecule is added (to yield P,), or when P, . is averaged over several
experiments, the curves are much more featureless (Figs. 1 and 2). Beyond the gel point,
such features of single-experiment Py 501 Temain preserved.

(2) The other possibility to find the gel point conversion is the extrapolation of the
weight fraction of the largest molecule (gel) to zero. Figures ja—c show Lhe dependence of
wg on conversion and system size at different scales of . With the exception of N = 10%
and the critical region, on a wider scale, the dependences practically copy the curve for
an infinite system ({[ig. 5¢) and fluctuations are small. The wg vs. & dependence is nol
linear. However, within a narrower a-range (Fig. 5b), the dependences for N = 10° -
107 are almost identical dewn to a = 0.503 and almost linear up to & = 0.515 — 0.520.
Linear extrapolation gives e; = 0.498 - 0.499. Figure 5a shows that extrapolalion of
dependences for N = 1 — 5 x 107 gives a value of a, = 0.5 £ 0.0005.

Thus, the extrapolation of the gel fraction dependence is the best method of ob-

taining the value of the critical conversion.

Dependences of Py, Py sol, wg and { on conversion

It has already been stressed that the w, vs. o dependence for an infinite system is very
well simulated by system sizes 10° — 107, and even the 10° system offers a reasonable
approximalion of the infinite system (at thesc relatively short distances from the gel
point the experimental delermination of w, by extraction is much less accurate).



3s2

P\r,sol

Figure 4: Py o for different experiments using
diffcrent starting numbers of generator with

4001

200F

Average
over 11 ex-
periments

> —rn
———

—a

—

N

N = 108.
0.2}
We
0.1}
0
0.48

.49

Figure 5b

0.5
147

0.1

.52

Wy

0.08

0.506

0.491 0.5
o
Figure 3a
T T T
04r
0.2r
------- L L
0.48 0.5 0.52 0.54
&
Figure 5¢

Figure 5: The weight fraction of the largest molecule, w,, as a function of a for N = 10* —,
10 ---, 107 —, 3 x 107 --, 5x 107 -- compared with theoretical dependence (—), with varying

conversion scales in Figs. 3a, 3b, be.

near the crilical point, in an infimle system.

The agreement of Py (before the gel point) and Pysa (beyond the gel point) is
somewhat worse partly because of the steepness of the Py or Py vs. & dependences

The log - log plots of Py and Py s vs. Iag — a| (Figs. 6a, b) show that a reasonable
agreement between the simulated and exact values can be reached for P, up to about
2x102 -10% for N changing from 10% to § % 107, The Pusor values seem to be lower to
a larther distance {rom the gel point than the P, values. Note that the scaling relation
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Figure 6: Theoretical and simulation dependences of P, before and Py ¢ beyond the crit-

ical conversion (e, = 0.5) compared with exponential (scaling) approximation !
(line 1) and theory (line 2) for N = 10% -~ 10°% -- 107 — and 5 x 107 --.

%
2 ja — oy

log Py = —log | — | + log( feg/2) (line 1) fits the exact dependence log Py, = —log | —
org| + log(feag /2 — agla — a,]) in a wide range of |o — ay].

The simulated values of cycle rank show a good agreement with the exact values
for an infinite system for N' 2 10%. The simulation behaviour is similar to that of w,.
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Figure 8: Computer (CPU) time as a
function of & for Silicon Graphics com-
puter with processor MIPS R4000.
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Conclusions

The Monte-Carlo simulation of network growth described here gives a reasonable approx-
imation for values expected for infinite systems for numbers of monomeric units N = 10¢
- 107; for the sol fraction, even N = 10% is still reasonable. The best method for de-
termination of the gel point conversion is the extrapolation of the gel fraction to zero.
The weight-average degrees of polymerization are more sensitive to NV and fluctuations
of computer experiments. A method for location of the critical point suggested in the
literature {4 is based on the assumption of the same critical exponents of P, and Py g
The method consists in the log - log plot of these quantities against | — ag| and shifting
oig, so that the slopes are equal. We consider this method less reliable because: (a) the
assumption of symmetry has not been generally praved, (b) the exponents (slopes) depend
more on N and conversion range than tog.

In increasing the reliability of the prediction, the increase in system size and increas-
ing number of computer experiments at the same size are competitive. Figure 8 shows
the dependence of computer CPU time in dependence on N and may serve as a guideline
for seleclion. The increase in ¥ by a factor of 10 corresponds to an increase in CPU time
by a factor of 25. This means that, for instance, 10 experiments each with N units are
less time-consuming than one experiment with 10N units.

The application and testing of this Monte-Carlo simulation is by far not limited
by this simple case. As will be reparled later, il works also well wilh complex reactions
invelving a number of elementary reaction steps like free-radical crosslinking copolymer-
ization.
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